
Application Experiments: MPPA and FPGA

Philip Top, Maya Gokhale
Lawrence Livermore National Lab, Livermore, CA, USA

Abstract— This paper describes the mapping ap-
proach, programmability, and performance of the Am-
bric Massively Parallel Processor Array (MPPA), and
compares these aspects to an FPGA. Two application
kernels, a trellis decoder, and n-gram frequency counter,
were ported to the Ambric development system and an
Altera Stratix II. We find that the mapping strategies to
Ambric and FPGAs are similar at the high level, but
diverge quite a bit in implementation due to differences
in granularity between the basic compute units of the
two devices. Both require substantial refactoring from
the baseline sequential algorithm. The FPGA is a factor
of 3–11x better in raw performance for the algorithms
tested, but the Ambric fares significantly better than
the FPGA in programmability and ease of application
development.

Keywords: Ambric, Ngram, MPPA, Trellis, ImpulseC

1. Introduction
For the past two decades, reconfigurable computing

architectures have been used to accelerate applications
in signal and image processing, cryptography, network
packet processing, bioinformatics, and finance (among
others). Application kernels employing FPGA-based
reconfigurable computers routinely realize speedup en-
hancements of 10 to 1000 times the equivalent algo-
rithm implemented entirely in software. The advantages
of FPGA for reconfigurable computing include

• Wide commercial availability. FPGAs are primar-
ily used for non-reconfigurable computing appli-
cations, fostering a large, diverse market.

• High flexibility of programming model. FPGAs
present a blank slate onto which a wide variety of
programming models can be mapped. eg. SIMD
[8], streaming [9], dataflow [3], systolic array [7],

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

LLNL-CONF-409662

co-processor [10], and, at a low level, a collection
of data paths controlled by state machines.

• High performance for many application do-
mains, particularly when incorporated as process-
ing pipelines in conjunction with data acquisition.

However, despite advances in languages and design
tools, reconfigurable computing with FPGAs remains
a relatively small niche, due primarily to the difficulty
associated with developing optimized applications for
FPGA-based reconfigurable computers. Mapping algo-
rithms onto FPGAs is still a labor-intensive process
requiring significant hardware, software, and parallel
processing skills. The long compile times; complex,
expensive backend tool chain; and difficulty of debug-
ging algorithmic code mapped to FPGAs contribute
to the application development difficulty. FPGAs have
appeared in appliances, eg. databases, text process-
ing accelerators, and bioinformatics accelerators, and
special purpose devices, but we are far from having
reconfigurable logic on every desktop machine.

To alleviate these shortcomings of FPGAs for com-
putation, a rich variety of system-on-chip processor
arrays have been proposed, implemented, evaluated,
and, in some cases, retired. The different architectures
cover the gamut of granularities and application spaces.
These include 1-D architectures such as Piperench and
Rapid, 2-D architectures such as Raw/Tilera, Mathstar,
PACT-XPP, and Ambric, and more mainstream multi-
core devices such as GPGPU, Cell, and multi-core x86.
The range of granularities is covered from FPGA’s
on the fine scale, through WPPA’s [13], and progress-
ing through consecutively more powerful individual
units through the Ambric, Tilera, and Modern CPU‘s.
Other types of processors target floating point com-
putations for graphics or signal processing including
Cell, GPGPU’s and ClearSpeed. Due to experience
with FPGAs and fine grained processor arrays, those
in the reconfigurable computing community have deep
familiarity with issues related to programming such



spatially parallel chip level processor arrays. The larger
software programming community is now exploring
these architectures [1], as clock frequencies stay stable
while transistors per chip continue to increase.

Such parallel programmable arrays on a chip are ap-
pealing compared to FPGA’s because they are actually
programmable, with fast compile times, relatively good
performance, and intuitive parallel programming mod-
els. For these reasons, our team undertook a study of the
Ambric Massively Parallel Processor Array (MPPA),
an architecture that combines simple RISC proces-
sors with a reconfigurable interconnect based on FIFO
channels. The architecture embodies a stream parallel
programming model in which processes with local state
communicate over bounded buffer channels. Our goal
was quantitatively to evaluate the programming model
and its realization in the Ambric chip and to assess
performance vs. programmability of the Ambric relative
to FPGA. For this purpose, we mapped two very differ-
ent application kernels to the Ambric, a simple trellis
decoder and an n-gram frequency counting kernel.

2. Hardware Architectures
2.1 Ambric

The Ambric Massively Parallel Processor Array
(MPPA) [4], [5] is a TeraOp System on Chip with 336
32-bit custom RISC processors physically arranged as
42 “brics.” Each bric consists of eight (four simple, four
DSP) processors, 21KB of SRAM, local interconnect,
and hierarchical channel interconnect. Internally, the
bric is organized as 2 Compute Units, each with 2
SR (simple) and 2 SRD (DSP) processors and a RAM
Unit (RU) containing 4 independent single ported RAM
banks of 512 32-bit words as shown in figure 1. The
interconnect implements self-scheduling FIFO commu-
nication. The RAM banks can also be linked directly
to the channels to implement other types of buffering
schemes of various sizes. Each 32-bit channel is capable
of 9.6Gb/s, with a total bisection of 792Gb/s. The initial
chip was fabricated in standard-cell 130nm, with 180M
transistors, runs at 300MHz and dissipates 3W–14W
depending on resource usage.

Ambric’s architecture embodies in hardware the
Kahn process graph programming model [12] of simple
processes communicating via uni-directional bounded-
buffer streams (called Ambric channels). Processes are
programmed in a subset of Java, which is compiled to
native machine code. Ambric’s Java subset is limited

Fig. 1: Ambric BRIC layout [4]

to bit operations, multiply, add and subtract on up to
32-bit data types. Higher level Java language features
such as polymorphism are not supported. Processes
compute over a combination of local state plus data
read from input channels. The channels can link to
other processes or to memory locations. The processors
compute a new state and can also write data to output
channels. The assembly instructions can read from two
channels or registers, store to a register and send to
an output channel in a single clock cycle. The process
interconnection and parameters are described separately
from the Java processor code in an “astruct” file. Thus,
the programming model combines procedural proces-
sor code with declarative process interconnection de-
scription. Compilation for Ambric consists of software
compilation of the Java code to native machine code
followed by mapping, place, and route of each process’s
program and interconnections onto the physical array.
The compile time for our applications was on the order
of 1-5 minutes on a 3.4GHz PC. The programming
environment consists of an Eclipse framework for code
development and debug, a Java functional simulator, an
instruction level simulator, and a seamless transition to
hardware debug.

2.2 FPGA-based Architecture
For these experiments, we used an Altera FPGA

on the XtremeData XD1000. The XD1000 architecture
combines a dual core Opteron with an Altera Stratix



II EP2S180 on a dual socket motherboard. FPGA and
processor communicate over non-coherent hypertrans-
port on a 64-bit interface at a maximum bandwidth of
500MB/s. Our designs did not need the off-chip SRAM
or DRAM accessible directly from the FPGA. The
Stratix II is a 90nm integrated circuit with 180,000 logic
elements, 9Mb of on-chip memory, 384 (18b×18b)
multipliers and clock frequency up to 550MHz. The
Stratix power usage depends on resource usage and
clock frequency. For our benchmarks, it is comparable
to the Ambric. Our algorithms were coded in C and
VHDL, and compiled with the Impulse C compiler and
the Quartus II 7.1 tool chain.

3. Trellis Decoder
Trellis coded modulation is a modulation scheme

that enables efficient communication over band-limited
channels with very low error rates [15]. A trellis en-
coder uses a rate (k/n) convolution code to map k input
bits to n output bits. An additional encoder parameter
is the constraint length K. The encoder produces 2n

symbols that are maximally separated from each other
via a Euclidean distance metric. The trellis decoder
takes each symbol and reduces it back to data bits
by using the Viterbi algorithm [6] which finds the
most likely set of bits for each symbol received. Trellis
coded modulation is a well understood technique used
frequently in industry for communication applications.

Our intent with the Viterbi trellis decoder module
was to gain an understanding of the Ambric program-
ming model, issues in debugging and optimization, and
performance of the Ambric chip. We also implemented
the decoder on the XD1000’s Stratix II in Impulse C.

3.1 Ambric Implementation
The decoder built for the Ambric decodes a rate 2/3

code, with K = 5. Each state has a limited number of
potential previous states, in our implementation each
state had four potential previous states. Each previous
state has an error associated with it. The transition
error to the new symbol is calculated for each of the
potential previous states. The additional error associated
with the transition is added to the error of the previous
states. The lowest total becomes the new state error
and is fed back into the system for the next incoming
symbol. The state with the lowest overall error is used
as the starting point of the trace back loop. The best
previous state for each state is stored in a trellis, going

Fig. 2: Trellis decoder structure

back 30 states. That “best” state is used as the output
state and converted back to bits. This pipelined process
is followed for each incoming symbol. The decoder
structure is illustrated in Figure 2.

The trellis decoder data flow graph was mapped
onto Ambric processes and channels. The initial process
reads a 32-bit data word and parses it into individual
symbols. These symbols are then written into a fanout
structure that can be compiled onto the channels without
requiring additional processors. The fanout feeds the
symbol into each of the 16 states of the trellis decoder.
Each of the state processing blocks also take in the
best state errors from its four possible previous states.
This creates a highly interconnected mesh in the Ambric
channels, which may not be the optimal configuration
but does create a effective test of the system routing
resources.

In addition to feeding back to the other state proces-
sors, the results are also fed into an aggregation stage.
This consists of four blocks each connected to four of
the processing states. The aggregation blocks combine
the data into a single stream and determine the best of
the four. A final aggregation stage combines the streams
from the four preceding aggregation stages to a single
output stream and picks the best state for input to the
traceback. The traceback is implemented as a 30 stage
pipeline. Each stage of the pipeline receives a best state
from the previous stage, uses that data to find its own
best previous state, then forwards that to the next stage.
After doing the lookup, it then forwards the row of
the trellis to the next stage and loads the new trellis
information. In this way the channel memory is used
as array storage. The active trellis is stored in registers



in the code so that no RAM is needed in the program.
Channel buffers are used to prevent stalls in the output
channels when transmitting the trellis to the next stage.
A final stage converts the best state back to bits and
collects a full 32-bit set before sending the result out
of the chip and back to the host computer.

The performance measurements were generated us-
ing an AM2045 GT board put in a PCIe slot on a
Windows XP workstation. The AM2045 GT board is a
small form factor 4 lane PCIe board. Once the program
was generated the config file was loaded to the board
using the SWIFT API. The SWIFT API is a C language
programming interface to the ambric control, and is
used for loading the programs, sending and receiving IO
and querying the board status. The timing information
was obtained using the windows timer API, and all
tests were run multiple times to obtain an average
throughput.

The initial version of the trellis decoder on the
Ambric was written completely in Java. Later versions
implemented the entire algorithm in assembly language.
The first version of the decoder showed only 35%
processor utilization, and the initial throughput was
970KB/s. Subsequent optimizations were applied (see
Table 1) with a final throughput of 8.47MB/s. From the
time of obtaining the software to the first functional
trellis decoder was about 6 weeks of half time work,
which included several test programs and Hello World
type applications. The various improvements to the Java
code were completed over the course of the next day.
The Java version 2 remapped some of the processes
from SRD processors to SR processors, for a small
improvement in throughput from reduced long range
channel utilization. In Java version 3, some of the
loop were manually unrolled. Java version 4 manually
scalarized some array variables, which resulted in more
than a factor of two improvement over v3. The trellis
decoder was then completely re-written in assembly,
for the biggest speedup, 2.65 over the previous Java
version. The initial assembly language version bor-
rowed from the available compiled Java version and
optimized that code which took a further 2 days. Finally,
using the instruction level simulator to track bottlenecks
and stalls, we revised the assembly code to interleave
operations to utilize a single cycle stall between test
and branch instructions. The final optimized assembly
implementation takes 33 cycles/symbol, with 4 cycles
of channel propagation delay in the interconnect. This

Version Throughput Notes
(MB/s)

SW .147 3.4 GHz dual core x86
Java v1 .970 initial Java
Java v2 1.006 shift some processes to SR
Java v3 1.327 unroll loops
Java v4 2.79 use processor registers
Asm v1 7.396 re-write in assembly
Asm v2 8.47 use single cycle stall

between test and branch

Table 1: Versions of trellis decoder

Algorithm Phase Num. Cycles
Separation 4
Processing 31

Aggregation 23
Find Min 21

Trellis 20
Bit output 10

Table 2: Processing time for each stage

final optimization step took an additional 3 days. All
told from the initial working version to the optimized
assembly code took a week. Table 2 details the number
of cycles for each phase of the algorithm.

The single thread software version on a 3.4GHz dual
core x86 had a throughput of 0.147MB/s, giving the
Ambric a speedup of 58 over software on this kernel.

3.2 FPGA Implementation
Using the same high level algorithm decomposition

as the Ambric design, we developed an FPGA imple-
mentation of the trellis decoder. The design was written
in Impulse C for the XtremeData XD1000 platform.
The design effort into the Impulse C coding was about
two weeks of work, this includes about a week for the
test examples and a week to do the actual coding. The
design borrowed heavily from the previously completed
Ambric design, and the code style was very familiar.
The FPGA algorithm written in Impulse C with few
hardware specific optimizations runs at 6.6MB/s at
100MHz. The theoretical max speed via simulation is
400MHz, giving a throughput of 26.4MB/s. As with
the Ambric, the processing phase is the bottleneck,
consuming 13 cycles compared with 33 for the Am-
bric. Some attempts were made at further optimization,



however due to the difficulty in compiling and testing
little progress was made in the available time.

3.3 Discussion
The trellis decoder benchmark was chosen as a

simple, well-understood code suitable for exploring
the potential of the Ambric architecture in terms of
programmability, usability and performance relative to
an FPGA. On both the Ambric and the FPGA, it
was necessary to extract spatial parallelism from the
algorithm, to apply pipelining, and to recognize and al-
leviate resource bottlenecks in computation and routing.
The single thread software version on a 3.4GHz dual
core x86 had a throughput of 0.147MB/s, giving the
Ambric a speedup of 58 over software on this kernel.
The FPGA version, though not totally optimized gave
a further speedup of 3x over the Ambric.

The raw performance numbers when comparing these
processors, may not be particularly meaningful. The
Ambric is a first generation chip built using older pro-
cess technologies. It therefore has significant potential
using modern manufacturing processes and design re-
finement for scaling the number of processors, reduced
power consumption and faster processor clocks. On
the other hand improvements in FPGA performance
will depend on future technologies. The Ambric design
architecture allows low level pipelining and parallel
processing, and the channel mechanisms provide in-
herent synchronization to the many parallel paths. The
individual process programming provides a natural tran-
sition from regular software design, and the hierarchical
structural code provides flexibility in overall design
mapping. Once the initial concepts were understood
designing for the Ambric was quite straightforward.

The Impulse C version of the code for the FPGA also
proved simple to use and program. The design in gen-
eral followed the same structure as the Ambric design
and only required learning a few new function calls and
techniques to write the code. To the point of simulat-
ing, the software design process was very comparable
to the Ambric. However, at the stage of compiling
to hardware, major differences appeared. Converting
to VHDL, then linking into the Quartus system and
building proved a complicated, time consuming process.
Building, generating, and running a single design on
the FPGA would frequently take the better part of an
afternoon. In contrast, on the Ambric, a design could
be built, executed, modified, and tested again many

times over the course of an hour. The rapid design
cycle allowed much finer understanding of the hardware
performance. Therefore problems and bottlenecks in the
system were relatively easy to discover and diagnose. In
contrast the long compile times on the FPGA precluded
such explorations, or limited them to the software sim-
ulations. Thus, the design was much more difficult to
optimize. As the number of components and processing
steps in the software design increase, it is likely the
advantages of the Ambric programming methodology
would become more pronounced.

In pure performance terms, the FPGA programmed in
Impulse C outperforms the Ambric on this benchmark.
In our experience, the Ambric proved much more
tractable than the FPGA to debug and optimization. The
Ambric’s fast design-code-test cycle and fine grained
visibility into processor state made it possible to create
highly optimized designs in short order. While the
absolute performance lagged the FPGA, the Ambric
still delivered one and a half orders of magnitude
performance improvement over a modern processor.

4. N-gram Frequency Counting
Calculation of n-gram frequency profiles in a docu-

ment stream is a compute and data intensive kernel that
has many uses. Previously, we have used this method
to classify documents according to language. It can
also be used in other classification problems network
security for example. An n-gram is simply a sequence
of characters of length n. An n-gram classifier takes
a sequence of characters, extracts n characters in a
sliding window, and compares the input sequence to a
known profile and measures the similarity of the input
sequence to that profile. In our language classification
application, the n-gram frequency profile of a document
is compared to known language profiles, and the most
similar language profile to the input document profile
determines the most probable language.

One common way of calculating the n-gram fre-
quency is with a Bloom filter [2]. In a Bloom filter, a
set of hash functions generates single bit addresses into
a bit vector. In training, the known n-grams are sent
through the hash function and the addresses pointed to
by the hash functions are set to 1. The hash functions
are then applied to the data under test, and if all
addressed bits contain a 1, the data is considered a
match. The Bloom filter has a finite probability of
false positive but will not generate false negatives.



The actual probabilities are determined by the number
of hash functions and the size of the bit vector. Our
implementation uses 4-byte n-grams with four hash
functions applied to each n-gram.

A slight variation modifies the algorithm by us-
ing a separate bit vector for each hash function and
language. In embedded architectures this allows for
parallel lookups and the use of distributed memory for
the bit vectors.

4.1 FPGA Implementation
Mapping the n-gram algorithm onto an FPGA was

described in [11] and is summarized here. The n-
gram classification using Bloom filters was done on
the Xtremedata XD1000 development system. The pro-
gramming was done with VHDL. The hash functions
used in the design were of the H3 family [14]. These
hash codes are designed to take advantage of the
programmable logic present in FPGAs and can be
computed very quickly in such an environment. Dual
ported embedded RAMs make it possible to apply two
sets of hash generators simultaneously, enabling two n-
grams to be tested in each RAM unit in each clock
cycle. The flexibility of the FPGA allows the designer
to take advantage of the tradeoff between accuracy
and RAM usage per language. Using four 2KB Bloom
filters results in a classification accuracy of 99.5%,
while dropping to two 1KB filters reduces the accuracy
to 95.6%. Using four 1KB filters achieves an accuracy
of 99.4%.

The number of languages supported is limited by
the number of on-chip RAM units. For the Stratix II
180, the number of languages is limited to between
10 and 30 depending on the size of the filters used.
Using the four 2KB filters allowed 10 languages to be
classified and if six 512 byte Bloom filters are used, up
to 30 languages can be supported. The FPGA design
can accept n-grams at a rate of 1.4GB/s, classifying up
to 8 per clock cycle. The maximum clock rate of the
design is 194MHz.

4.2 Ambric Implementation
The Ambric version of the n-gram benchmark also

uses Bloom filters to count n-grams. However, the
low level implementation differs significantly from the
FPGA. One difference is in hash function realization.
On the FPGA, the H3 hash functions are compactly
represented in programmable logic, and so are dupli-
cated along with the Bloom filters. On the Ambric,

a hash function is computed through a sequence of
instructions, and a complex hash functions can consume
many cycles and processors to the detriment of pipeline
throughput. Therefore, on the Ambric, there is a single
hash function computation unit for each branch pipeline
that streams hash codes to multiple Bloom filters. In this
case we trade off a small increase in the required data
transmission with a reduction in required processors.

4.2.1 Hash Function

In the implementation of n-gram counting, we must
convert four 8-bit characters into four hash codes for the
Bloom filters. In the Ambric, the simplest implementa-
tion is to use the 8-bit characters as look up addresses
into the 32-bit wide local memory, using a total of 4KB
(4 bytes/ngram × 256 addresses/byte × 4 bytes/word)
per language. Therefore, each SRD processor can do
the lookups for a single language and two languages
can be implemented on a single Compute Unit. The
8-bit character specifies the address of a 32-bit word
in the lookup table. To index an individual bit in the
word, a 5-bit hash code is generated by a series of XOR
operations on the 4 8-bit characters. First, a single 5-
bit hash code is generated, and then that hash code
is copied and incremented three times, resulting in 4
unique hash codes. An AND operation with a bitmask
is done later so that the hash codes don’t grow larger
than 5 bits as a result of the increments. The increment
operation is needed to ensure the ordering of specific
n-grams was valid, as otherwise any byte rotation of
the profile n-grams would also be valid.

4.2.2 Algorithm Overview

The structure of the Ambric implementation consists
of three stages shown in Figure 3. The first stage
holds the system components needed to interact with
the PCIe bus and the host computer. The next stage
comprises the n-gram core functions for reading the
data, generating the hash codes, sending the codes to the
processing stages, and tallying the final results. The n-
gram core streams n-gram sequences and hash codes to
four parallel processing pipelines. A processing pipeline
is set up in a circular arrangement as in Figure 4; it
consists of a head, a tail, and a series of processing
blocks. The n-grams and hash codes flow in one di-
rection and the results flow in the opposite direction
to maximize the utilization of the local channels. At
the end of each file the tail triggers a sequence to



Fig. 3: Ambric N-gram design

Fig. 4: Ambric N-gram processing chain diagram

transmit the results back up the pipeline, after which
the counters are reset. Each processing pipeline consists
of interconnected processing blocks (see Figure 5). A
processing block performs the Bloom filter lookups,
increments the match counts for n-grams that were
recognized, and routes the n-gram stream on to the next
processing block in the chain.

A processing block uses nearly all the components in
a Compute Unit (2 SR processors, 2 SRD processors,
and four RAM banks). The data router and counter are
implemented on the SR processors while the Bloom
filters are programmed on the SRD processors. The

Fig. 5: Ambric N-gram processing block unit

router takes in the data for the n-gram operation from
the previous block or the head, and sends it on to
the next processing block. The tail of the processing
pipeline sinks the data. The router then distributes the
data to the Bloom filters. For each n-gram the Bloom
filters perform a memory access, a bit mask generation,
and a comparison for each of the four hash codes. The
counter program does the final matching check on each
n-gram to see if all four hash tables matched and stores
the tally for each language.

4.2.3 Flexible Configuration

Like the FPGA n-gram algorithm, the Ambric al-
gorithm is highly configurable in that the number of
languages can be made to vary along with overall
throughput. The algorithm has been designed such that
compile time configuration options can be used to set
the number of languages recognized. The astruct files
(specifying stream interconnections between processes)
allow conditional compilation, so the hardware is al-
located in a balanced fashion automatically based on
the number of languages desired. The four processing
pipelines can be configured for parallel or round robin
processing of the n-grams. In parallel mode, all the
chains to process the same n-gram, each with a different
language model. In round robin mode, all chains to
hold the same language model and process different
n-grams. Additionally, the processing block is capable
of operating in parallel or switched operation, so it can
process either two languages or a single language at
nearly twice the speed.



4.2.4 Assembly Level Optimizations
The coding of the n-gram classifier was done in

assembly language to optimize the memory accesses
and take advantage of the instruction level parallelism
that is available in the Ambric assembly code. There is
a delay of 3 clock cycles between sending the address
to the RU channel and the availability of the data in
the return channel. In assembly language it is possible
in the Bloom filter code to interleave the four lookups,
hash masks, and comparisons, and prevent the processor
from stalling.

Instruction level parallelism in the SRD was also
utilized to the extent possible. For instance the code

setbit | and_a RURD,bitmask,sink
add_i | muxne_ca tc,1,tc

generates a bitmask and computes an AND operation
on the value retrieved from memory (RURD). It then
increments the counter tc if the bit was set. The bitmask
value is obtained from the hash code and the tc counter
contains the number of Bloom filters with a match for
each n-gram. This functionality executes in 2 clock
cycles.

It is likely many of the non time-critical functions
could be implemented in Java with no loss in perfor-
mance. However in this implementation, all the func-
tions were written in assembly language for consistency,
to gain experience with the processor, and to take
advantage of the additional features not available at the
Java language level.

4.2.5 Bloom Filter Initialization
The initialization of the n-gram profiles in the Ambric

is done by sending sets of integers to the Ambric. The
first integer is a count containing the total number of
patterns to program across all languages. Following the
count, are pairs of values. The first contains the id of the
language, the next contains the desired sequence. All
languages are identified by id in the Ambric, numbered
from 1 to N. As the initialization information flows
through the core of the application, it computes the hash
codes and sends that information as well. Each of the
chains know which language ids it contains, so they
only pass along the appropriate data for the processing
blocks within the respective chains. Processing blocks
check for id match and either send the data to the
Bloom filters for programming or just pass it to the next
block. In this manner, assuming the desired patterns are

distributed somewhat evenly among all the languages,
the programming of the n-gram profiles is very fast and
has been tested close to the maximum data rate of the
Ambric chip for a single thread on a single channel,
which in the current system is roughly 270MB/s.

4.2.6 Performance Measurements
Throughput was measured using Ambric’s Swift API.

This API allows the Ambric card to interact with
standard C programs. The testing was done with a set of
random files stored in memory to remove any influence
of the disk I/O on the test. The tests were run using
randomly generated 1 MB files. For each test, 1 GB of
data was sent to the processor. The randomly generated
files contained specific key sequences that were tar-
geted to specific languages. This testing was sufficient
to determine correct operation of the algorithm and
determine the throughput. The purpose was to evaluate
the algorithm operation on the Ambric as opposed to
evaluating the algorithm itself (the latter was previously
done in [11]). Various file sizes were tried with no
discernible change in the throughput until the size got
down to 10’s of bytes at which point the small amount
of extra processing at the end of each file becomes a
significant fraction of the required processing.

4.2.7 Channel-Related Optimizations
The results of the n-gram throughput tests are shown

in Table 3. Version 1 of the design used end-of-
file indicators and channels as flags to indicate end
of document, so that the processing chain tail could
transmit the results and reset the counters at the end
of each file. However, this method caused a stall in the
flag channel the router and counter. The bottleneck was
removed by eliminating the flag channel. In version 2
the counter was initialized with the number of bytes
in the document. It could then execute its loop for
a fixed number of iterations and not rely on the flag
channel. Setting up the loop iteration count involved
sending additional information throughout the design at
the start of each file but removed the channel bottleneck
and increased the throughput. After the design change,
the performance improved to that seen in the version 2
column of Table 3.

The modification to the counter operation improved
the design throughput significantly. However, there was
still a significant loss in performance when moving
from a single processor per language to multiple pro-



Proc/ Max Rate v1 Rate v2 Rate v3 Theo.
lang lang (MB/s) (MB/s) (MB/s) (MB/s)

1 148 10.6 15.88 15.88 16.83
2 74 12.17 17.85 31.76 31.79
4 37 24.33 35.65 63.37 63.58
8 18 48.68 71.12 126.74 127.16

Table 3: Results from n-gram classification on the
Ambric

cessors. The problem was found in the sink of each
processing pipeline. The sink was designed to absorb
data at a rate significantly faster than the data through-
put in the pipeline. No channel buffers were available
in the pipeline as all the memory was required by the
Bloom filters. Therefore, only a single integer buffer
on the channel was available between the stages in the
pipeline. The cause of the bottleneck was uneven data
flow in the pipeline. Since the tail was absorbing data
at a constant rate, the single buffer could cause a stall
which would propagate back up the pipeline. The data
was quickly absorbed but the stall still propagated back
up the processing chain. The process, in effect, created
an oscillation in the processing pipeline. The solution
was to slow down the tail sinking pattern but match
it to the data flow in the pipeline. The Ambric tools
and debugging software greatly aided in locating the
performance problem, particularly the instruction level
simulator.

The Version 3 column of Table 3 shows the final
throughput results along with the theoretical perfor-
mance numbers as shown by the simulator. The Bloom
filters are the longest process, requiring 17 cycles in the
single processor per language case and 18 in the others.
The final results showed very close agreement with the
theoretical results given by the simulators.

4.3 Discussion
The two implementations of the n-gram frequency

counting follow the same high level data flow, but
diverge in the details of the compute blocks, with each
striving to exploit hardware features of the respective
platform.

The Ambric proved fairly easy to program compared
to the FPGA, and provided a great deal of visibility
into operation and bottlenecks. A major advantage of
the Ambric is that even using a large fraction of the re-
sources of the chip, the total compile time of the project

was still under 5 minutes. Going from unprocessed code
to running on hardware in 5 minutes allows a great deal
of trial and error which is often necessary in achieving
the best performance out of a system. This process is
often impractical on an FPGA as the design cycle is
much more involved and can take many hours for even
a moderate design. With the FPGA, the designer must
rely more heavily on the cycle level simulator, but such
simulations can only be run on very small amounts of
data. On the Ambric, testing could be performed on
the actual hardware with real data, providing excellent
visibility into processor and channel state.

The channel communication methodology eases the
burden of synchronization. However, in larger designs,
minor mismatches in flow rate can cause significant
performance degradations, or additional buffering must
be used. For instance the mismatch in data transmission
and reception patterns between the processing blocks
and the processing chain tail caused a greater than 40%
drop in performance even though the total data rates
were compatible.

Both VHDL and Assembly are low level languages
that describe how the hardware operates. In both cases
they require some care in development and coding
and a good understanding of how the hardware they
describe is structured. In the case of the Ambric, the
functions can be described independently of eachother,
whereas the VHDL required the programmer to define
the synchronization mechanism as well, this signifi-
cantly increased the complexity of the design from a
software point of view. Impulse-C can take care of
some of the synchronization issues but also makes the
hardware specific optimizations further removed from
the programmer.

For this algorithm kernel, we compare two optimized
implementations. The FPGA outperforms the Ambric
by a factor of 11 in throughput. The Ambric showed
a speedup of 9x over an efficient software implemen-
tation on an Opteron CPU. In terms of power and
area the Ambric and FPGA show further improvements
when compared with a CPU, though direct comparison
between the Ambric and FPGA is difficult due to
differences in feature size and architecture.

The differences in hardware require different ap-
proaches at the low level. While the hash functions
could be done in logic on the FPGA and become
only a minor component, in the Ambric they consumed
full processors and required many cycles to compute.



The ability to optimize and layout the processors and
create higher level objects allows efficient use of the
resources, to the point that it is possible to use nearly
100% of availabe resources. The Ambric represented a
significant speedup over a software solution, but could
not match the performance of an FPGA. However, it
did prove much more enjoyable and efficient to utilize
near its full potential.

5. Conclusions
In this work, we investigated mappings, programma-

bility, and performance of the Ambric MPPA in com-
parison to an FPGA. The trellis decoder kernel was cho-
sen as a vehicle to compare code development effort on
the two platforms from the basis of no prior experience
with either technology. The n-gram frequency counting
kernel further delved into the Ambric architecture.
With the use of assembly code, we could create tight
code sequences to minimize stalls. Detailed analysis
of channel stalls led to further code optimization that
balanced pipeline throughput.

We note that these application kernels were chosen
for their relevance to our work rather than to be well
matched to a particular architecture. Both kernels map
well onto FPGAs, whereas the Ambric is more suited to
video and image processing where complex multistage
processing is required. It also may prove very adept at
handling situations with a large number of conditional
processing steps, since the branching can be easily
placed into the code of a single processor.

Development on both platforms requires a shift in
design layout from traditional sequential software to a
streaming, dataflow-oriented mapping. In both cases,
the mapping must take into account the hardware
available in order to efficiently utilize the platform’s
potential. The Ambric mapping was constrained by
channel utilization considerations, the size of the em-
bedded memories, and the instruction mix of a process’s
code. On the FPGA, the sizes and ports available on
embedded memories were the biggest factors, followed
by efficient utilization of the lookup tables and DSP
blocks.

In terms of programmability, in our experience the
Ambric did live up to the company’s programmability
claims. The programming model was easy to compre-
hend and use. Compared to the FPGA, the Ambric
code development environment, simulator, and debug-
ger were also easy to use and resulted in very high

productivity. In fact, with the aid of the tools and the
visibility they provided into runtime operation, it was
possible to optimize the design use nearly 100% of the
Ambric resources.

In terms of performance, the FPGA showed the best
performance, outperforming the Ambric by factors of
3–11 though the Ambric had excellent performance in
comparison to software in both performance metrics.

References
[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, et al.

The landscape of parallel computing research: A view from
berkeley. Technical Report 183, University of California,
Berkeley, 2006.

[2] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, 1970.

[3] A. P. W. Böhm, J. Hammes, B. A. Draper, M. Chawathe,
C. Ross, R. Rinker, and W. A. Najjar. Mapping a single
assignment programming language to reconfigurable systems.
The Journal of Supercomputing, 21(2):117–130, 2002.

[4] M. Butts. Synchronization through communication in a
massively parallel processor array. IEEE Micro, pages 32–
40, September-October 2007.

[5] M. Butts, A. M. Jones, and P. Wasson. A structural object
programming model, architecture, chip and tools for reconfig-
urable computing. IEEE Symposium on Field-Programmable
Custom Computing Machines, 2007.

[6] G. Forney. The viterbi algorithm. Proceedings of the IEEE,
61(3):268–278, 1973.

[7] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich,
D. Sweely, and D. Lopresti. Building and using a highly
parallel programmable logic array. IEEE Computer, 24(1):81–
89, Jan. 1991.

[8] M. Gokhale and B. Schott. Data parallel C on a reconfigurable
logic array. Journal of Supercomputing, 9(3):291–313, 1994.

[9] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-
oriented FPGA computing in the Streams-C high level lan-
guage. In IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 49–56, 2000.

[10] M. Gokhale, J. Stone, and E. Gomersall. Co-synthesis to a hy-
brid risc/fpga architecture. Journal of VLSI Signal Processing
Systems, Sept. 2000.

[11] A. Jacob and M. Gokhale. Language classification using n-
grams accelerated by fpga-based bloom filters. In Proceedings
of the HPRCTA ’07, Nov. 2007.

[12] G. Kahn. The semantics of a simple language for parallel
programming. Information Processing, pages 471–475, Aug.
1974.

[13] D. Kissler, F. Hannig, A. Kupriyanov, and J. Teich. A
highly parameterizable parallel processor array architecture.
In Proceedings of the IEEE Field Programmable Technologies
conference 2006, pages 105–112, 2006.

[14] M. V. Ramakrishna, E. Fu, and E. Bahcekapili. Efficient
hardware hashing functions for high performance computers.
IEEE Transactions on Computers, 46:1378–1381, 1997.

[15] G. Ungerboeck. Channel coding with multilevel/phase signals.
IEEE Transactions on Information Theory, 28(1):55–67, 1982.


